
Name: Andrew Id:

15-121 Fall 2023 Assessment 4
Up to 50 minutes. No calculators, no notes, no books, no computers. Show your work!

1. (4 points) Binary Search Tree Construction

Imagine you are constructing a binary search tree of integers, and the following integers are added in the
following order:

73, 82, 68, 59, 46, 72, 5, 33

Draw the resulting binary search tree.

Page 1 of 8



2. (4 points) Binary Search Tree Removal

Consider the following binary search tree:

35

1 76

27 40

9 38 47

39

Assuming you are using the in-order successor removal technique discussed in class, draw the state of the
tree from after 35 has been removed from it.

Page 2 of 8



3. Binary Tree Traversal

Consider the following binary tree. Note that it is not a binary search tree, it is simply nodes stored
arbitrarily in a binary tree.

73

82 46

59 68 5

72 33

(a) (3 points) Assuming the tree is traversed using an in-order traversal and the nodes printed, what is
the resulting sequence? (Assume that left is followed before right.)

(b) (3 points) Assuming the tree is traversed using a pre-order traversal and the nodes printed, what is
the resulting sequence? (Assume that left is followed before right.)

(c) (3 points) Assuming the tree is traversed using a post-order traversal and the nodes printed, what is
the resulting sequence? (Assume that left is followed before right.)

Page 3 of 8



4. Binary Heap

Consider the following array representation of a binary heap:

93 91 65 90 85 38 16 80 3 73

(a) (1 point) Draw the heap represented by this array.

(b) (3 points) Give the array after adding 92 to the heap. Write your final answer in the boxes below.

Page 4 of 8



5. (a) (1 point) Consider the following heap:
90

73 55

41 62 39 1

4 28 42 50 24

Write this heap in array form. Write your final answer in the boxes below.

(b) (3 points) Building on your answer from part a, give the array after calling removeMax() on the heap.
Write your final answer in the boxes below.

Page 5 of 8



6. Binary Search Tree Free Response

Consider the following code for a binary search tree of strings. The only special thing about it is the helper
method called longer, which is very useful for solving part (b).

public class BinarySearchTree {
private TreeNode root;

private class TreeNode {
private String data;
private TreeNode left;
private TreeNode right;

private TreeNode(String data) {
this.data = data;

}
}

public BinarySearchTree() {
this.root = null;

}

public void add(String item) {
this.root = add(root, item);

}

private TreeNode add(TreeNode node, String item) {
// Assume this code is present and works properly.
// It uses the natural ordering of strings to
// place them in the tree.

}

private static String longer(String s1, String s2) {
if (s1.length() > s2.length()) {

return s1;
} else {

return s2;
}

}
}

The rest of the question is on the next page.

Page 6 of 8



(a) (5 points) Write a new method in this class called contains(String item) which returns true if item
is found in the tree, and false otherwise. You may write additional helper methods, but you may not
modify existing methods or add any new instance variables to BinarySearchTree. You also may not
use any other data structures, such as an array or an ArrayList.

Page 7 of 8



(b) (10 points) Write a new method in this class called longestString(), which returns the longest string
in the tree. If there are no strings in the tree, return null. If there is a tie for the longest string, you
may return any one of the correct answers. You may write additional helper methods, but you may
not modify existing methods or add any new instance variables to BinarySearchTree. You also may
not use any other data structures, such as an array or an ArrayList.
Hint: Don’t forget about the helper method longer that has already been provided. It can simplify
part of this problem.

Page 8 of 8


